Google Scholar
Wasserstein Distributionally Robust Nash Equilibrium Seeking with Heterogeneous Data: A Lagrangian Approach
Z. Wang, G. Pantazis, S. Grammatico, M. M. Zavlanos, and K. H. Johansson
Exact Variance of Random Return in Distributional LQR and Its Application to Mean-Variance Optimal Control
R. Teng, Z. Wang, Y. Gao
Distributionally Robust Federated Learning with Outlier Resilience
Z. Wang, X. Yi, X. Konti, M. M. Zavlanos, and K. H. Johansson
Federated Flow Matching
Z. Wang, A. Dong, M. Selim, M. M. Zavlanos, and K. H. Johansson
Group Distributionally Robust Machine Learning under Group Level Distributional Uncertainty
X. Konti, Y. Shen, Z. Wang, K. H. Johansson, M. J. Pencina, N. J. Economou-Zavlanos, and M. M. Zavlanos
Source-Guided Flow Matching
Z. Wang, A. Harting, M. Barreau, M. M. Zavlanos, and K. H. Johansson
Risk-averse learning with delayed feedback
S. Wang, Z. Wang, K. H. Johansson, and S. Hirche
First- and Zeroth-Order Learning in Asynchronous Games
Z. Wang, X. Yi, M. M. Zavlanos, and K. H. Johansson
Projected Gradient Descent for Constrained Decision-Dependent Optimization
Z. Wang, C. Liu, T. Parisini, M. M. Zavlanos, and K. H. Johansson
Risk-Averse Certification of Bayesian Neural Networks
X. Zhang, Z. Wang, Y. Gao, L. Romao, A. Abate, and M. Kwiatkowska
The Symposium on Software Engineering: Theories, Tools, and Applications (SETTA), 2025.
Outlier-Robust Distributionally Robust Optimization via Unbalanced Optimal Transport
Z. Wang, Y. Shen, M. M. Zavlanos, and K. H. Johansson
NeurIPS-24. Annual Conference on Neural Information Processing Systems, 2024.
Policy Evaluation in Distributional LQR
Z. Wang, Y. Gao, S. Wang, M. M. Zavlanos, A. Abate, and K. H. Johansson
L4DC-23. Learning for Dynamics and Control, 2023. (Oral Presentation)
Risk-Averse No-Regret Learning in Online Convex Games
Z. Wang, Y. Shen, and M. M. Zavlanos
ICML-22. International Conference on Machine Learning, 2022.
Risk-averse Learning with Non-Stationary Distributions
S. Wang, Z. Wang, X. Yi, M. M. Zavlanos, K. H. Johansson, S. Hirche
Automatica, accepted.
Policy Evaluation in Distributional LQR (Extended Version)
IEEE Transactions on Automatic Control, 2025.
Asymmetric Feedback Learning in Online Convex Games
Z. Wang, X. Yi, Y. Shen, M. M. Zavlanos, and K. H. Johansson
IEEE Transactions on Automatic Control, accepted.
Constrained Optimization with Decision-Dependent Distributions
Distributed Dynamic Event-Triggered Communication and Control for Multi-Agent Consensus: A Hybrid System Approach
Z. Wang, Y. Gao, Y. Liu, S. Wang, and L. Wu
Information Science. 618: 191-208. 2022.
Online Learning of Nash Equilibria in Risk-Averse Games
ACC-24. American Control Conference, 2024.
Convergence Analysis of the Best Response Algorithm for Time-Varying Games
CDC-23. IEEE Conference on Decision and Control, 2023.
A Zeroth-Order Momentum Method for Risk-Averse Online Convex Games
Z. Wang, Y. Shen, Z. I. Bell, S. Nivison, M. M. Zavlanos, and K. H. Johansson
CDC-22. IEEE Conference on Decision and Control, 2022.