See Google Scholar for publications by year.
Federated Flow Matching
Z. Wang, A. Dong, M. Selim, M. M. Zavlanos, and K. H. Johansson
Source-Guided Flow Matching
Z. Wang, A. Harting, M. Barreau, M. M. Zavlanos, and K. H. Johansson
Distributionally Robust Federated Learning with Outlier Resilience
Z. Wang, X. Yi, X. Konti, M. M. Zavlanos, and K. H. Johansson
Group Distributionally Robust Machine Learning under Group Level Distributional Uncertainty
X. Konti, Y. Shen, Z. Wang, K. H. Johansson, M. J. Pencina, N. J. Economou-Zavlanos, and M. M. Zavlanos
Outlier-Robust Distributionally Robust Optimization via Unbalanced Optimal Transport
Z. Wang, Y. Shen, M. M. Zavlanos, and K. H. Johansson
NeurIPS-24. Annual Conference on Neural Information Processing Systems, 2024.
Risk-averse learning with delayed feedback
S. Wang, Z. Wang, K. H. Johansson, and S. Hirche
Risk-Averse Certification of Bayesian Neural Networks
X. Zhang, Z. Wang, Y. Gao, L. Romao, A. Abate, and M. Kwiatkowska
The Symposium on Software Engineering: Theories, Tools, and Applications (SETTA), 2025.
Risk-averse Learning with Non-Stationary Distributions
S. Wang, Z. Wang, X. Yi, M. M. Zavlanos, K. H. Johansson, S. Hirche
Automatica, accepted.
Online Learning of Nash Equilibria in Risk-Averse Games
ACC-24. American Control Conference, 2024.
Risk-Averse No-Regret Learning in Online Convex Games
Z. Wang, Y. Shen, and M. M. Zavlanos
ICML-22. International Conference on Machine Learning, 2022.
A Zeroth-Order Momentum Method for Risk-Averse Online Convex Games
Z. Wang, Y. Shen, Z. I. Bell, S. Nivison, M. M. Zavlanos, and K. H. Johansson
CDC-22. IEEE Conference on Decision and Control, 2022.
Projected Gradient Descent for Constrained Decision-Dependent Optimization
Z. Wang, C. Liu, T. Parisini, M. M. Zavlanos, and K. H. Johansson
Constrained Optimization with Decision-Dependent Distributions
IEEE Transactions on Automatic Control, 2025.
Exact Variance of Random Return in Distributional LQR and Its Application to Mean-Variance Optimal Control
R. Teng, Z. Wang, Y. Gao
Policy Evaluation in Distributional LQR (Extended Version)
Z. Wang, Y. Gao, S. Wang, M. M. Zavlanos, A. Abate, and K. H. Johansson
Policy Evaluation in Distributional LQR
L4DC-23. Learning for Dynamics and Control, 2023. (Oral Presentation)
Distributed Dynamic Event-Triggered Communication and Control for Multi-Agent Consensus: A Hybrid System Approach
Z. Wang, Y. Gao, Y. Liu, S. Wang, and L. Wu
Information Science. 618: 191-208. 2022.
First- and Zeroth-Order Learning in Asynchronous Games
Z. Wang, X. Yi, M. M. Zavlanos, and K. H. Johansson
Asymmetric Feedback Learning in Online Convex Games
Z. Wang, X. Yi, Y. Shen, M. M. Zavlanos, and K. H. Johansson
IEEE Transactions on Automatic Control, accepted.
Convergence Analysis of the Best Response Algorithm for Time-Varying Games
CDC-23. IEEE Conference on Decision and Control, 2023.